Bayesian Logic Networks

Technical Report 1AS-2009-03

Dominik Jain, Stefan Waldherr and Michael Beetz

Intelligent Autonomous Systems Group, Technische Universitit Miinchen
Boltzmannstr. 3, 85748 Garching bei Miinchen, Germany
{jain, waldhers, beetz}Q@Qcs.tum.edu

This report introduces Bayesian logic networks (BLNSs), a statistical rela-

tional knowledge representation formalism that is geared towards practical
applicability. A BLN is a meta-model for the construction of a probability
distribution from local probability distribution fragments (as in a Bayesian
network) and global logical constraints formulated in first-order logic. An
instance is thus a mixed network with probabilistic and deterministic con-
straints.
We provide the formal semantics of BLNs and explain their practical re-
alization as implemented in the open-source software distribution called
PrROBCOG, which supports learning and a wide range of inference algo-
rithms.

Contents

1

2

Introduction
Formalism and Semantics

Representing Bayesian Logic Networks in Practice

3.1 Declarations oo

3.2 Conditional Probability Fragments
3.2.1 Preconditions
3.2.2 Domain Nodes (Per-Constant Dependencies) .
3.2.3 Combination Functions

3.3 Logical Formulas

Inference

4.1 Inference in the Ground Auxiliary Bayesian Network .
4.2 Inference in the Ground Mixed Network
4.3 Inference Via Translation into Markov Logic Networks

Parameter Learning
Software Tools

Conclusion and Future Work

1 Introduction

When modelling relational domains in the context of AI applications, where both ex-
pressiveness and tractability are key, we need to be able to cope with both a high degree
of complexity as well as a high degree of uncertainty. Representation formalisms must
therefore combine ways of abstractly specifying rules that generalize across domains
of relevant objects with probabilistic semantics. In the field that has emerged as sta-
tistical relational learning, a number of such formalisms have recently been proposed
[5].

Among the most expressive such formalisms are Markov logic networks, which el-
egantly extend first-order logic to a probabilistic setting by attaching weights to for-
mulas. The weighted formulas collectively represent a template for the construction
of undirected graphical models (i.e. Markov random fields). Unfortunately, parameter
learning in MLNSs is an ill-posed problem and approximate inference is typically ex-
pensive even for conceptually simple queries. Other approaches are loosely based on
Bayesian networks [1, ?], thus enabling exact and efficient learning methods that even
scale to large amounts of training data — a much-needed quality in real-world applica-
tions. However, these formalisms typically sacrifice expressiveness for tractability, as
they usually support only local probabilistic constraints, while even simple relational
properties required on a global level, such as the transitivity or symmetry of a relation,
cannot be modelled.

The representation formalism we propose in this work, Bayesian logic networks
(BLNs), is a reasonable compromise in this regard. Its probabilistic components are
based on conditional probability distribution templates (for the construction of a
Bayesian network), which can straightforwardly be obtained from statistical data.
Global constraints are supported by a second model component, a template for the
construction of a constraint network, in which we represent deterministic constraints
using first-order logic.

2 Formalism and Semantics

A Bayesian logic network is a template for the construction of a mixed network [7]
with probabilistic and deterministic dependencies. Formally, a Bayesian logic network
(BLN) B is a tuple (D, F, L), where

e D= (7,5, E,t) comprises the model’s fundamental declarations. T is a taxon-
omy of types, which is represented as a directed forest (T, 1), where T is the
actual set of types and I C T x T is the generalizes relation (inverse is-a), i.e.
(T;,T;) € I ift T; is a generalization of T}. S is a set of signatures of functions,
and F is a set of (abstract) entities that are to exist in all instantiations, whose
types are given by the function

t:E— 2T\ {0}

which maps every entity to the non-empty subset of types T" = {Tl, . ,T|T|}
it belongs to. The function ¢ thus induces a cover of the set of entities with

sets Er, = {e € E | T; € t(e)}. (We assume that ¢ is consistent with 7, i.e. if
(T3,T;) € I, then e € Er; implies e € Er,.)

The set S contains the signature of every function f, defining the domain and
the range of the function in terms of types, i.e.

(fv(TiU"wﬂn)yT’r)eS A f:ETil x"'XET,in _>ET,‘

Logical predicates are simply boolean functions, i.e. functions that map to Ep, =
B, and we implicitly assume that the corresponding type symbol Boolean is
always contained in T and that B = {True, False} C E.

We regard a set B, that corresponds to a type T, € T which appears as the
return type of a function as a (fixed) domain, i.e. as a fixed set of entities that
must be fully contained in E, whereas the extensions of other types may vary
from instantiation to instantiation (and the corresponding subsets of F may even
be empty).

F is a set of fragments of conditional probability distributions. Every fragment
defines a dependency of an abstract random variable f(pi,...,pn) (the fragment
variable) on a set of other abstract random variables (the parents), where f is one
of the functions defined in S, and the parameters pq,...,p, are either variables
typed according to f’s signature or entities in F belonging to the respective type.
The dependencies are simply encoded in a conditional probability table (CPT),
which defines, for every setting of the parent variables (i.e. every element in
the domain product of the parent variables, as specified by the ranges in the
functions’ signatures), a probability distribution over the elements in the domain
of the fragment variable (i.e. the range of f).

Additionally, a fragment may define preconditions for its applicability, which
may involve arbitrary logical statements about the parameters pi,...,p, (or
parameters that can be functionally determined by these).

Note that for regular fragments, it is necessary to require a domain restriction,
i.e. we require the set of variables appearing in the parents of f(p1,...,pn) to be
limited to the variables in pq,...,p, (or variables whose values can be function-
ally determined from these). Otherwise, the conditional probability distribution
of the fragment variable would be dependent on a variable number of parents
(depending on the extension of the free variable’s domain), which cannot be
captured in a fixed-size CPT. We can nevertheless deal with such cases by asso-
ciating with the fragment a combination function that specifies how the set of
parents is to be aggregated to yield a single discrete value on which the fragment
variable could depend.

The set £ consists of formulas in first-order logic (with equality) over the func-
tions/predicates defined in S, which represent hard deterministic dependencies.
Such formulas may help us to model global constraints that cannot concisely
be representated by the conditional probability fragments in the set F, which
represent local dependencies by definition.

Instantiation. For any given set of entities E’, whose types are given by a function
t': B’ — 2T\), a Bayesian logic network B defines a ground mixed network M, B,E =
(X,D,G, P,C) as follows:

e F and t in B are augmented to include E’,¢'. The instantiation is valid only if in

the resulting set F, all type-specific subsets are non-empty, i.e. V1; € T. E, # ().
e The set of random variables X contains, for each function (f, (T3,,...,T3,),T) €
S and each tuple of applicable entities (e1, ..., e,) € Er, x---xEr, ,oneelement
X; = f(e1,...,en). The corresponding domain D; € D is simply E7, .

e The conditional probability table P; € P applicable to a random variable X; =
fle1,...,e,) is determined by F, which must contain exactly one fragment for
f whose preconditions are met given the actual parameters. The connectivity of
the directed graph G is such that there is a directed edge from every parent to
the fragment variable — as indicated by the applicable fragment.

e For every grounding of every formula in £ (obtained by substituting quantified
variables by the applicable elements of E accordingly), the set C' contains one
constraint C; = (S;, R;), where S;, the scope of the constraint, is the product of
the return type domains of the functions mentioned in the ground formula, and
R; is the relation indicating the combinations of values for which the formula is
satisfied. (For universally quantified formulas, we generate a separate constraint
for each binding of the quantified variables to keep the individual constraints
small.)

In the special case where £ = (3, the mixed network contains no constraints and is
thus equivalent to the Bayesian network (X, D, G, P).

For purposes of inference, we may generally convert any mixed network Mg g into
an auziliary Bayesian network Bg g, allowing us to leverage the large body of ap-
proximate inference algorithms available for Bayesian networks. Bg g+ is constructed
from Mg g by adding to X for every constraint C; = (S;, R;) € C' a boolean auxil-
iary variable A; that represents the corresponding constraint and has as its parents
in G all the nodes that the constraint depends on (as indicated by its scope S;). The
probability table P; associated with A; contains (as its entry for the value True) 1 for
every configuration of parents contained in R; and 0 for all other configurations. Since
all constraints are required to be satisfied, when we perform inference in the auxiliary
Bayesian network, we condition on the auxiliary variables, requiring that they all take
on a value of True. Therefore, if |C| = k, we have

PMB,E/ (X =2)= PBB,E’ (X =z | Ay = True, ..., Ay = True) (1)

Note, however, that most Bayesian network inference algorithms will perform poorly
in the presence of unlikely evidence, and setting the auxiliary constraint variables to
True typically constitutes such unlikely evidence.

Example. Let’s imagine a simple “parent—child” scenario, in which we have entities of
the types T' = {11 = parentT,T» = childT, T3 = propertyT}. In particular, we want to
determine whether the isParentof relation holds given the properties of a parent p and
a child ¢. The properties that parents and children can have are defined by the type
T5, and the functions propParent (p) and propChild(c) are defined to map parents
and children to their respective property represented by an element of Er,. Therefore,

S = {(isParentOf, (parentT, childT), Boolean),
(propParent, parentT, propertyT),
(propChild, childT, propertyT)}

Since propertyT is a fixed domain, the set of entities F will contain the constants of this
domain, i.e. E = Epropertyr = {Al, A2}, while the model contains no entities for the
types parentT and childT. As shown in Figure 1, the set F contains three fragments,

propParent(p)
Al | 70.0%

propChildic)
Al | 50.0%

30.0% A2 | 50.0%

isParentOf(p.c)

propParent(p) Al A2

propChildic) Al AZ Al AZ
True 80.0% | 40.0% | 40.0% | 60.0%
False 20.0% | 50.0% | 60.0% | 40.0%

Figure 1: Graphical representation of the conditional probability fragments in the
“parent-child” scenario (one for each of the functions declared in the model).
The conditional distribution of isParentOf indicates that it is more likely for
parents to have the same property as their children.

one that defines the conditional probability distribution of isParentOf given the at-
tributes of the parent and the child, i.e. P(isParentof(p, ¢) | propParent(c), propChild(c)),
and two for the marginal distributions of the properties. The set £ contains a single
logical formula that states that every child must have exactly two parents:

V. Ip1, pa. isParentOf(p1, x) A isParentOf(pa, x) A —=(p1 = p2)A
—Jps. isParentOf(ps,) A =(p1 = p3) A =(p2 = p3)

We can instantiate this model for any (non-empty) set of parents and children. Figure 2
shows the auxiliary Bayesian network for an instantiation with two parents, {X, X2},
and two children, {Y,Y2}. The nodes GF1 and GFO are the auxiliary constraint variables
introduced for the logical constraint in £, which results in two ground formulas (one
for each child).

propParent(X2) propChild(y) propcChild{y2)
=) = =

R

isParentof(x.¥)) CisParentof(x.¥2)) (isParentof(x2,v) isParentOf(x2,v2)
{} & =, ()

Figure 2: An auxiliary Bayesian network obtained for an instantiation of the parent-
child model involving two parents and two children.

3 Representing Bayesian Logic Networks in Practice

In this section, we show how a Bayesian logic network B = (D, F, L) can be represented
in practice. The declarations D are defined in a text file, in which we declare the types,
the entities belonging to these types and the signatures of functions. For the declaration
of fragments contained in F, we make use of a graphical editor, while the set £ of logical
formulas is once again defined in a simple text file. The concrete syntax and semantics
are discussed below.

3.1 Declarations

We define the set of types T, the set E of known entities (and, implicitly, the function
t assigning types to these entities), as well as the set of signatures S in a text file as
follows:

type Typel, Type2 isa Typel, Domainil;
guaranteed Domainl domll, doml2, domil3;

1
2
3
4
5 random Domainl Functionl(Typel);

6 random Boolean Predicatel(Type2);

Note that we use a notation that is largely equivalent to the one used for BLOG models
[8].1

The keyword type is used to list the set of types T, and isa is used to build up
the taxonomy. The keyword guaranteed is used to list constant symbols referring to
entities that belong to a particular type and are guaranteed to be contained in all
instantiations of the model (which is mandatory for fixed domains, i.e. types that
appear as function ranges, such as Domainl). The declaration of guaranteed domain
elements does not, however, necessarily prohibit further elements from being added

1The background is that, in special cases, BLNs may coincide with BLOG models, and using the
same syntax thus allows the application of BLOG-specific software to BLN models.

to the type’s extension during instantiation. The keyword random precedes a function
signature declaration, which serves as the basis for the instantiation of random vari-
ables. In line 5, we define a function that maps from Typel to Domainl, and in line 6
a predicate applicable to entities of Type2.

In addition to these declarations, we may want to make statements about func-
tional dependencies between the entities connected by a relation. The declaration of
such dependencies makes it possible to perform a functional lookup (provided that the
predicate itself is an evidence predicate, i.e. its full extension is always given as evi-
dence). For example, imagine the model of a sequence of actions in which we provide
the after(al,a2) relation, which states that an action al happens after a2. In this
model, it is may be unacceptable for a given action to not have exactly one predecessor
and one successor (ignoring, for the moment, the problem of defining the first and the
last action in a closed sequence). We declare functional relations using relation keys:
We may define any (sub-)tuple of the relation’s arguments as a key for a functional
lookup. A relation key definition thus takes a function f and declares some of its argu-
ments to form such a key. The relation key then guarantees that for any tuple of key
objects, there exists exactly one functionally determined object (or tuple of objects).
The syntax is as follows:

type action;
random Boolean after(action, action);

1
2
3
4
5 relationKey after(al,_)

6 relationKey after(_,a2)

In such declarations, an underscore indicates a functionally determined argument while
the remaining arguments (which can be arbitrarily named in the declaration) make
up the key. In the above example, we declare two relation keys for the after relation.
In line 5, we state that for an action a2, there exists exactly one other action that
precedes it, i.e. there is exactly one action to which al is related via the relation after
such that al can be functionally mapped to the action to which it is related. Line 6
declares the inverse mapping. Functional dependencies are used to look up variables
whose values could not otherwise be determined during the instantiation of a fragment
(see below). Because we may have fragments that are not applicable at all times (see
Section 3.2.1), the requirement that the function be total may be relaxed.

3.2 Conditional Probability Fragments

The second defining part of our BLN B, the set F, specifies generalized conditional
probability fragments for the functions/predicates defined in D, indicating the depen-
dencies of generalized random variables (i.e. usually function terms where at least some
of the arguments are variables). We use a graphical representation method to define F
in a fragment network, which makes it easy to create generalized random variables and
their dependencies: We model dependencies similar to pure Bayesian networks, where
the arcs indicate dependencies. Usually, we will manually define only the connectivity

of the fragment network and learn distribution parameters and variable domains from
data. The template structure is the foundation for the materialization of the proba-
bilistic part of ground mixed network Mp g: For every function and every tuple of
parameters, we instantiate a node and determine its parents in the ground network
according to the sub-structure of the fragment network that is applicable.

By default, every node defines a fragment and thus represents a fragment variable.
The parents of a node may be fragment variables themselves, interconnecting different
fragments in the network. However, to keep the fragment network clearly arranged, a
fragment may also be completely detached from other fragments. We then define the
parents of the fragment variable using auxiliary nodes that do not represent fragments
themselves. The # operator allows us to declare such auxiliary parent nodes without
simultaneously declaring a fragment (see Figure 3). Apart from clarity, it may also be
practical to do this if a fragment variable is to depend on two variables referring to the
same function, or to allow context-specific naming of the meta-variables appearing as
parameters of the fragment variable (which, for obvious reasons, must also appear in
the parents).

Figure 3: Demonstration of equivalent fragments using the # operator. To the left,
the three fragments for a, b and ¢ are defined in two detached parts, using
an auxiliary node in the specification of the fragment for a, whereas to the
right, the three fragments are defined in a single connected network without
auxiliary parent nodes.

3.2.1 Preconditions

The fragment network may contain more than one fragment for any function declared
in the set of signatures S. To decide which fragment is applicable, we need to define
appropriate preconditions. This is, for example, useful when we want to instantiate dif-
ferent structures of the ground network depending on the evaluation of given evidence
variables.

Preconditions are formulated as special parent nodes of the fragment variable. One
very simple way of defining a precondition is to prefix a boolean parent (i.e. a parent
referring to a boolan function) with the + operator: By using the + operator on a
parent node, we state that the fragment in question is to apply only if (for the variable

assignment in question) the parent (an evidence variable) evaluates to true. A usage
example is shown in Figure 4.

#place(az)
=,
+involves(a2,02)
=,
objectT(o2)
8

performs(p,a2,52)
&

Figure 4: Preconditions using the + operator. In the fragment for performs(p, a2, s2)
(person p performs action a2 in situation s2), we for example require
that next(s, s2) holds by prefixing the parent with the + operator, since
performs(p, a2, s2) also depends on properties relating to the successor sit-
uation s of s2. By declaring this requirement, we also enable the functional
lookup from s2 to s (next being a functional predicate).

A more elaborate way of specifying preconditions is through logical precondition
nodes. Precondition nodes allow us to create completely different substructures in the
ground network depending on the evaluation of a formula given in first-order logic (for
formula syntax, see Section 3.3). When the formula is evaluated during instantiation,
the meta-variables that appear in the fragment variable are always bound to their
respective values and can be used in the formula as expected. Any other variables
appearing in the formula must be (either universally or existentially) quantified.

EXIST c0 (next(co,c1))
+performedin(a0,c0)
7}

#contextT(c0)
5,

#actionT(a0)
{}

(EXIST c0 (next(c0,c1)))

performedin(a,cl) performdin(a,c1)
) {l}

Figure 5: Precondition Nodes

As an example, consider the problem we encounter when modelling a sequence of
time steps, where the first time step needs to be treated differently, because it has no
predecessor to influence its properties. Figure 5 illustrates how we can differentiate
the respective cases: We only want to instantiate the template to the right whenever
the situation has a predecessor, while we want to instantiate the left hand template
otherwise. This example thus illustrates how one could represent time series models
such as hidden Markov models or, more generally, dynamic Bayesian networks as BLNs.

10

It should be noted that all the predicates appearing in preconditions (be it in the
case of the + operator or using the more elaborate precondition nodes) are required
to be evidence predicates. Their extensions must therefore be fully specified in any
evidence database, which is why we generally apply the closed-world assumption by
default to such predicates (i.e. any value that is not explicitly given in the evidence
database is assumed to be False).

3.2.2 Domain Nodes (Per-Constant Dependencies)

In previous examples, a fragment’s conditional distribution was dependent on values of
functions declared in S. In some cases, it can be useful to have conditional distributions
dependent on elements of a (fixed) domain, i.e. in effect, to have a separate conditional
distribution per constant belonging to the domain. To support this, the parent of a
fragment variable may simply bear the name of one of the meta-variables appearing
in the fragment variable. The parent then then stands for the values/constants in the
domain that corresponds to the type the meta-variable belongs to.

As an example, consider Figure 6, where we want to model the habits of people
participating in meals. People are characerized by their type, as are the meals (e.g.
breakfast, lunch, dinner). We allow several types of goods and utensils that may be
used and consumed respectively. We use domain nodes for utensils and goods in this
model (u and g), because here, we do not want to distinguish between the actual
objects being used or consumed but are interested only in the class of the object being
used or consumed (but we do want to distinguish between different people and different
meals of the same type because of additional attributes).

3.2.3 Combination Functions

We can deal with the case that a fragment variable can be dependent on a variable
number of parents by associating with the fragment a combination function. This func-
tion specifies how the set of parents is to be aggregated to yield a single discrete value
on which the fragment variable could depend. At this time Bayesian logic networks
support one such combination function, the logical disjunction which is a useful tool
to declare one variable as a disjunction of other variables (as one would obtain it using
existential quantification). The function represents a disjunction over the objects of a
stated type. We use the =0R: operator for the conjunction function and it is repre-
sented as a node with the syntax =OR:pred1(v;,,...,v;,)|v;,,. .., v;, whose parent is
pred2(vi,...,v;) where {v;,,...,v;, } W{vj,,...,v5,.} = {v1,...,v}. During instanti-
ation, where the typed variables v; are substituted by entities F;, it has the following
semantics,

1 if 3(Ej,,..., E},) € dom(vj,) x ... x dom(vj,)
pred1(E;,,...,E;)= s.t. pred2(Eq, ..., E;)) = True

0 otherwise

In other words, the =0R: operator sets a given prediate predl to true iff there is
an assignment of the free variables v;,,...,v;, such that pred2 evaluates to true.

11

personTip)
(}

usesAnyForin(p,u.g.m)

r
=0OR:usesAnylnip.u.m)|g

Figure 6: Domain nodes and the OR combination function

While we could achieve the same using a logical formula in £ that uses existential
quantification, the =0R: operator can be the more efficient solution (depending on the
inference algorithm).

We currently support only the disjunction combination function. One can, however,
think of many other combination functions that might be useful and that might be
included in the future, as modelling demands increase, e.g. combination functions that
represent the maximum, mean or mode operations.

To clarify the use of the =0R: operator, consider again Figure 6. The predicate
usesAnyForIn(p,u,g,m) evaluates to true whenever a person p uses a good a utensil
u to consume some good g in meal m, while the predicate usesAnyIn(p,u,m) should
evaluate to true whenever the person uses the utensil for anything in a meal. This
is done with the help of the =0R: operator: In the fragment for usesAnyln, g is a
free variable, causing a variable size set of parents depending on the extension of its
domain, which is mapped to a single value by the combination function.

3.3 Logical Formulas

The set £ in a Bayesian logic network may contain a set of logical formulas constraining
the set of possible worlds. Formulas are declared in a text file, which contains one
formula per line, each terminated by a period. We use the following plain text syntax
for the logical operators:

conjunction
v disjunction
=> implication
<=> Dbiimplication
Quantifiers are expressed as follows:
EXIST vars (formula) existential quantification
FORALL vars (formula) universal quantification

where vars is a comma-separated list of variables (words beginning with lower-
case letters) and formula is any complex formula (in which these variables appear)

12

expressed using the logical operators above. Universal quantification may be implicit,
i.e. if a formula contains free variables, these variables are assumed to be universally
quantified.

In the logical coupling, non-boolean functions in the BLN are converted to predicates
with the value of the function as an additional parameter, i.e. the value expression
f(A, B) = C of function (f, (T1,T»),T5) € S would become f(A, B,C).

As an extension to pure first-order logic, we also support (the concise formulation of)
cardinality restrictions, as many real-world relations are subject to such restrictions.
A cardinality restriction takes the form

count(rel(zy,...,2n) | iy .-, 25,) €C (2)

where m < n and S C N, the semantics being that if the parameters that are given by
the index set {i1,...,%m,} are bound to some fixed vector of constants, the number of
bindings for the remaining parameters for which the relation holds true is required to
be in the set C.

For example, in a model of parent-child relationships in which we do not want to
distinguish between males and females we want to state that every child should have
excactly two parents. This can easily be expressed by using the count constraint:

count (parent (x,y) |x) = 2

Although this formula could also be expressed in pure first-order logic, we can think of
relations with a higher count constraint, where the specification would become rather
lengthy.

4 Inference

There are several different approaches to inference in Bayesian logic networks. A
straightforward approach would be to instantiate a ground network, i.e. either the
ground auxiliary Bayesian network or the ground mixed network, and then apply one
of many standard inference algorithms. More elaborate methods will seek to abstract
away from the ground instances, exploiting the repeated structures that result from
the application of the template model. BLNs may also be translated into MLNs, which
effectively enables MLN inference algorithms to be applied to BLNs.

4.1 Inference in the Ground Auxiliary Bayesian Network

By converting a ground mixed to a standard Bayesian network, we can leverage a large
body of approximate inference algorithms devised in the past, including

e likelihood weighting [2]
e backward sampling [3]

e importance sampling based on evidence prepropagation (EPIS-BN) [12]

13

e Gibbs sampling [4]

The first three are based on importance sampling, while Gibbs sampling is a Markov
Chain Monte Carlo (MCMC) method.

Moreover, exact methods, such as Pearl’s algorithm or algorithms based on variable
elimination, may be applicable to smaller instances.

It should be noted, however, that Bayesian network algorithms typically cannot
handle high degrees of determinism and fail to produce (usable) results if evidence
with low probability is provided. As all logical constraints in a BLN may result in such
low-probability evidence, especially large ground networks often call for methods that
specifically take determinism into account.

4.2 Inference in the Ground Mixed Network

In [7], Mateescu and Dechter propose two exact inference algorithms for mixed net-
works, one based on bucket elimination, the other on AND/OR search. An approximate
inference algorithm that adapts importance sampling to the specific requirements of
mixed networks, SampleSearch, is introduced in [6]. MC-SAT [9], another approximate
technique, which was originally proposed for Markov logic networks, is an algorithm
that is well-suited to inference in mixed networks, as it essentially reduces, within a
slice sampling framework, probabilistic inference to repeated SAT sampling. One of its
drawbacks is, however, that inference problems are typically not significantly simplified
if the number of hard logical constraints is reduced.

4.3 Inference Via Translation into Markov Logic Networks

A BLN B = (D, F, L) can be straightforwardly translated into a Markov logic network
(MLN) L = {(F;,w;)} [10], i.e. a set of weighted formulas in first-order logic that
collectively represent a template for the construction of a Markov random field. The
translation simply involves transforming every fragment in F into a set of weighted
logical formulas as follows: For every entry of the fragment’s CPT, we include in
L the conjunction of the fragment variable and all its parent variables (and, if the
fragment has preconditions, add the conjunction of these preconditions as a further
conjunct) with the logarithm of the probability value as the weight of the formula (if
the probability value is 0, we choose a sufficiently large negative value). We model
non-boolean functions in D as functional predicates, adding the return value as an
additional parameter. The hard logical constraints in £ are added directly to L, using
a sufficiently large positive weight.

The translation procedure outlined above allows us to apply MLN inference algo-
rithms in order to perform inference in BLNs. As inference algorithms, especially new
developments such as lifted first-order belief propagation [11] could be of interest.

14

5 Parameter Learning

Parameter learning in Bayesian logic networks consists of learning the conditional
probabilities that parameterize the fragment network. Given a database containing
observations that fully specify a possible world for a given set of entities, the probabil-
ities are learnt based on maximum likelihood, which, as in Bayesian networks, reduces
to counting relative frequencies of parent-child occurrences in the data, as these already
constitute a sufficient statistic.

6 Software Tools

BLNs are supported by a number of software tools, implemented in the PrRoBCoG
software suite for statistical relational learning, including

e a graphical editor for the creation of fragment networks

e command-line tools for learning and inference along with graphical wrapper ap-
plications (see Figure 7)

e tools for the scripting of relational stochastic processes in order to generate re-
lational data

e a model server for easy integration of probabilistic reasoning into other projects

The software suite is freely available for download.?

7 Conclusion and Future Work

Bayesian logic networks are a simple yet powerful representation formalism that unifies
probabilistic and logical representations. As meta-models for the generation of mixed
networks or (auxiliary) Bayesian networks, BLNs can be straightforwardly trained
even on large data sets and support a wide range of exact and approximate inference
techniques.

As directions for future work, it is conceivable to add support for soft logical con-
straints (as in Markov logic networks), which could increase expressiveness (at the
expense of learning performance, however). Furthermore, there is still a great need for
more efficient inference mechanisms if statistical relational models are to be used as rea-
soning components in cognitive technical systems, where near-real-time performance is
highly desirable. Especially approaches that seek to exploit repeated sub-structures in
ground networks (i.e. lifted or semi-lifted approaches) would be worthwhile exploring.

2http://ias.cs.tum.edu/research /probcog

15

References

[1] N. Friedman, L. Getoor, D. Koller, and A. Pfeffer. Learning probabilistic relational

<5 BLN Query Tool

=1oi x|

‘ragnents: parent_child,xml = I shou
Duvlar‘abiuna parent_child.blog - I saueJ
Type objType_Parent; E
Type objType_Child:
Tupe proplon:
‘ random Boolean isParentOf (objTupe_Parent ,objType_Child)s
random Proplom propChild{objType_Child):
random Proplon propParent(objType_Parent)s
/
I rename on edit
. Logical: parent_child.bln ~| saud
propChild{cb Type_Child, proplom) Al
propParent(objTupe_Parent, proplom)
isParent0f (obiType_Parent, objType_Child)
every child has tuo paren
EXIST x1 (isParentOF(x1,y) * EXIST x2 (isParentOf(x2,y) * |{x1=x2) ~ I{(EXIST x3 (isf
/
I rename on edit
@:icerce: parent_child_2_2,blogdb =] _sae |
objTupe_Parent = {,%2} Y
objType_Child = {¥,¥2}
propDon = {A1,A2}
propParent (¥)=A1
propChild{(Y)=A1
V|
I rename on edit
® Hethod: Backuard Sanpling =
Queries: |isParent0f (X,Y)
100000

&x. steps:
Cll preds:

Add. parans:

=

>> Start Inference <<

Figure 7: The inference tool

models. In IJCAI pages 1300-1309, 1999.

[2] R. M. Fung and K.-C. Chang. Weighing and integrating evidence for stochastic
simulation in bayesian networks. In UAI ’89: Proceedings of the Fifth Annual
Conference on Uncertainty in Artificial Intelligence, pages 209-220, Amsterdam,
The Netherlands, The Netherlands, 1990. North-Holland Publishing Co.

[3] R. M. Fung and B. D. Favero. Backward simulation in bayesian networks. In R. L.
de Méantaras and D. Poole, editors, UAI pages 227-234. Morgan Kaufmann, 1994.

[4] S. Geman and D. Geman.

chine Intelligence, 6:721-741, 1984.

16

Stochastic relaxation, gibbs distributions, and the
bayesian restoration of images. IEEE Transactions on Pattern Analysis and Ma-

5]

[6]

17l

18]

19]

[10]

[11]

[12]

L. Getoor and B. Taskar. Introduction to Statistical Relational Learning (Adaptive
Computation and Machine Learning). The MIT Press, 2007.

V. Gogate and R. Dechter. SampleSearch: A Scheme that Searches for Consistent
Samples. In AISTATS, 2007.

R. Mateescu and R. Dechter. Mixed deterministic and probabilistic networks.
Annals of Mathematics and Artificial Intelligence, 2008.

B. Milch, B. Marthi, S. J. Russell, D. Sontag, D. L. Ong, and A. Kolobov. BLOG:
Probabilistic Models with Unknown Objects. In IJCAI, pages 1352-1359, 2005.

H. Poon and P. Domingos. Sound and Efficient Inference with Probabilistic and
Deterministic Dependencies. In AAAL AAAI Press, 2006.

M. Richardson and P. Domingos. Markov Logic Networks. Mach. Learn., 62(1-
2):107-136, 2006.

P. Singla and P. Domingos. Lifted first-order belief propagation. In D. Fox and
C. P. Gomes, editors, AAAI pages 1094-1099. AAAT Press, 2008.

C. Yuan and M. J. Druzdzel. An importance sampling algorithm based on ev-
idence pre-propagation. In In Proceedings of the Nineteenth Annual Conference
on Uncertainty in Artificial Intelligence, pages 624-631. Morgan Kaufmann Pub-
lishers, 2003.

17

