
IPA CANopen User Manual

Version 0.01

Authors: Tobias Sing
Thiago de Freitas Oliveira Araujo
Eduard Herkel

Fraunhofer Institute for
Manufacturing Engineering and Automation

Stuttgart, Germany

Last modified on Tuesday 30th July, 2013

Contents

1 Introduction 1

2 Installation 2

2.1 Prerequisites . 2

2.2 CAN device driver . 3

2.3 IPA CANopen ROS package . 4

2.4 ROS-indendent CANopen library 4

2.4.1 Installation . 4

3 Command-line tools 6

3.1 The homing tool . 6

3.2 The move device tool . 7

3.3 The get error tool . 7

4 CANopen communication in ROS 8

4.1 The tutorial examples . 8

4.2 Getting started with ipa canopen ros 9

4.3 The canopen ros node . 9

4.3.1 Parameters . 9

4.3.2 Joint limits (urdf) . 10

i

4.3.3 Services, Subscribers, and Publishers 11

4.4 Driving the Schunk LWA4P arm 12

4.4.1 Inverse kinematics . 12

5 Extending the CANopen library 13

6 Troubleshooting 14

Chapter 1

Introduction

This manual describes the IPA CANopen library, a C++ framework for com-

municating with CANopen motor devices. Most users will use the ROS (Robot

Operating System) wrapper provided as part of the package. However, the li-

brary itself is completely independent from ROS and therefore can also be used

in other contexts.

The library and examples can be found in the following github repositories:

• https://github.com/ipa320/ipa_canopen

• https://github.com/ipa320/ipa_canopen_tutorials

In Section 2, a step-by-step guide to installing the library is given. Command-

line tools for moving and referencing CANopen-enabled modules are described in

Section 3. The control of CANopen modules from ROS is explained in Section 4.

Finally, in Section 5, we show how to use and extend the library independently

from ROS.

1

https://github.com/ipa320/ipa_canopen
https://github.com/ipa320/ipa_canopen_tutorials

Chapter 2

Installation

At the moment, the first thing you have to do (if not done already) is to manually

install the CAN device driver, as described in Section 2.2.

For the installation of the IPA CANopen library, there are two options:

• For usage from within ROS (Section 2.3)

• For using the C++ library without ROS (Section 2.4)

2.1 Prerequisites

You will need the following free tools, which are available for all operating sys-

tems:

• CMake (to manage the build process). It is pre-installed on many *nix

operating systems. Otherwise, you need to install it first, e.g. in Ubuntu:

sudo apt-get install cmake

• git (to download the sources from github). In Ubuntu, it can be installed

with: sudo apt-get install git

• A C++ compiler with good support for the C++11 standard, e.g. gcc

version 2.6 or higher (default in Ubuntu versions 11.04 or higher).

2

2.2. CAN DEVICE DRIVER 3

2.2 CAN device driver

Currently, the library has only been tested with the PCAN-USB CAN

interface for USB from Peak System. It has been tested with

version 7.6. The Linux user manual for the Peak interface is

available at: http://www.peak-system.com/fileadmin/media/linux/files/

PCAN%20Driver%20for%20Linux_eng_7.1.pdf. Briefly, to install the drivers un-

der Linux, proceed as follows:

• Download and unpack the driver: http://www.peak-system.com/

fileadmin/media/linux/files/peak-linux-driver-7.6.tar.gz.

• cd peak-linux-driver-x.y

• make clean

• Use the chardev driver: make NET=NO

Note: The option NET=no is crucial!

• sudo make install

• /sbin/modprobe pcan

If the Kernel is newer than 3.5 the following driver should be down-

loaded: http://www.peak-system.com/fileadmin/media/linux/files/

peak-linux-driver-7.7.tar.gz

• Test that the driver is working:

– cat /proc/pcan should look like this, especially ndev should be NA:

*------------- PEAK-System CAN interfaces (www.peak-system.com) -------------

*-------------------------- Release_20120319_n (7.5.0) ----------------------

*---------------- [mod] [isa] [pci] [dng] [par] [usb] [pcc] -----------------

*--------------------- 1 interfaces @ major 248 found -----------------------

*n -type- ndev --base-- irq --btr- --read-- --write- --irqs-- -errors- status

32 usb -NA- ffffffff 255 0x001c 0000cc3f 0000edd1 00063ce1 00000005 0x0014

– ./receivetest -f=/dev/pcan32 Turning the CAN device power on

and off should trigger some CAN messages which should be shown on

screen.

– Note: If you do not receive messages using this test, you still

have issues with the device driver which need to be solved

before proceeding further.

http://www.peak-system.com/fileadmin/media/linux/files/PCAN%20Driver%20for%20Linux_eng_7.1.pdf
http://www.peak-system.com/fileadmin/media/linux/files/PCAN%20Driver%20for%20Linux_eng_7.1.pdf
http://www.peak-system.com/fileadmin/media/linux/files/peak-linux-driver-7.6.tar.gz
http://www.peak-system.com/fileadmin/media/linux/files/peak-linux-driver-7.6.tar.gz
http://www.peak-system.com/fileadmin/media/linux/files/peak-linux-driver-7.7.tar.gz
http://www.peak-system.com/fileadmin/media/linux/files/peak-linux-driver-7.7.tar.gz

4 CHAPTER 2. INSTALLATION

2.3 IPA CANopen ROS package

• git clone git://github.com/ipa320/ipa_canopen.git

• rosmake ros canopen

• Test if the installation was successful:

– In one terminal: roscore

– In another terminal: rosrun ipa canopen ros canopen ros. This
should give the following error message:

Missing parameters on parameter server; shutting down node.

• Optionally, you can also install the tutorial examples:

– git clone git://github.com/ipa320/ipa_canopen_tutorials.

git

– rosmake ipa canopen tutorials

2.4 ROS-indendent CANopen library

If you just want to use the C++ library independently from ROS, follow the

steps described below:

2.4.1 Installation

• Go to a directory in which you want to create the source directory.

• git clone git://github.com/ipa320/ipa_canopen.git

• cd ipa canopen/ipa canopen core

• Create a build directory and enter it: mkdir build && cd build

• Prepare the make files: cmake ..

• make

– Optionally, you can make the installation available system-wide:

sudo make install

git://github.com/ipa320/ipa_canopen.git
git://github.com/ipa320/ipa_canopen_tutorials.git
git://github.com/ipa320/ipa_canopen_tutorials.git
git://github.com/ipa320/ipa_canopen.git

2.4. ROS-INDENDENT CANOPEN LIBRARY 5

• Test if the build was successful:

– cd tools

– ./homing

– This should give the output:

Arguments:

(1) device file

(2) CAN deviceID

Example: ./homing /dev/pcan32 12

Chapter 3

Command-line tools

The IPA Canopen library comes with two command-line tools for interacting with

devices: move device can be used to easily move a single device. homing tells the

device to adjust its zero reference point to the current position.

Many devices do not have an absolute encoder. When disconnected from power,

they rely on memory to store the current position of the device. Occasionally,

these devices may become dereferenced, i.e. have a misadjusted zero position. In

this case, manually moving the device to the true zero position using move device,

followed by a call to homing will readjust the device to the correct zero reference

point.

Below, we will briefly describe both tools. When called without arguments, they

will show their arguments along with a usage example.

3.1 The homing tool

This tool takes two arguments:

• The name of the CAN device file, e.g. /dev/pcan32

• The CAN device ID of the module to be homed, in decimal notation

When successfully evoking this command, you will usually either hear a clicking

sound or see the device moving a bit.

6

3.2. THE MOVE DEVICE TOOL 7

3.2 The move device tool

This tool takes five arguments:

• The name of the CAN device file, e.g. /dev/pcan32

• The CAN device ID of the module to be homed, in decimal notation

• The duration between two CANopen SYNC commands in milliseconds (if

you do not know what this means, just use e.g. 10)

• The target velocity of the device in rad/sec

• The linear acceleration towards target velocity in rad/sec2. Enter 0 to

immediately request target velocity.

When first moving your device, it is recommended to start with low target veloc-

ities. Also note that some devices may enter an error or emergency state if the

requested acceleration towards target velocity is too high.

3.3 The get error tool

This tool takes two arguments:

• The name of the CAN device file, e.g. /dev/pcan32

• The CAN device ID of the module to be homed, in decimal notation

When successfully evoking this command, you will get the content of the er-

rors registers from the device, naming the Manufacturer status register and the

CANOpen standard errors register. This information is useful for debugging the

status of the devices, and checking the source of problems when commanding the

device.

Chapter 4

CANopen communication in

ROS

In this chapter, we will show how to use the ipa canopen ros library for commu-

nicating with CANopen devices.

4.1 The tutorial examples

We have prepared a number of examples that cover the configuration steps which

are necessary in order to use the library. These examples can be run via the launch

file in their respective directory. As explained in Section 2.3, the examples can

be installed as follows:

• git clone git://github.com/ipa320/ipa_canopen_tutorials.git

• rosmake ipa canopen tutorials

At the moment, there are 2×2 examples in the tutorials. The variations in these

examples are:

• 1 CAN device vs. 3 CAN devices

• Direct sending of velocity commands to the ipa canopen ros node vs. using

a trajectory controller to drive the device(s) to a desired position.

These examples should help you configuring the node for your own setup.

8

git://github.com/ipa320/ipa_canopen_tutorials.git

4.2. GETTING STARTED WITH IPA CANOPEN ROS 9

4.2 Getting started with ipa canopen ros

Before looking into the details, let’s first try if everything works.

• roscd ipa canopen tutorials/examples/1dof simple/config

• Edit the file 1dof module.yaml so that it contains a valid CAN id for your

hardware (in decimal notation), and the correct device file (e.g. /dev/p-

can32).

• In the same directory, edit the file CANopen.yaml, so that it contains the

correct device file and the correct baudrate (e.g. 500K) to which the bus

has been configured.

• roslaunch 1dof simple.launch

• That’s all! Now, after the ROS nodes have been launched, you should see

your device moving slowly back and forth. If that’s the case, your setup

has been successful.

4.3 The canopen ros node

In this section we will describe the canopen ros node and the required ROS

parameter settings, services, subscribers, and publishers. The node can be run

by rosrun ipa canopen ros canopen ros, but will usually be launched from a

launch file.

To see tested configuration examples, please refer to the config and urdf sub-

directories of the examples in the ipa canopen tutorials package, and to their

corresponding launch files.

4.3.1 Parameters

In this section, we describe the necessary parameter settings.

• In the namespace in which the canopen ros node is launched, the following

parameters need to exist on the ROS parameter server:

10 CHAPTER 4. CANOPEN COMMUNICATION IN ROS

– devices: A list of CAN device files (name), its corresponding baud

rates (baudrate), and SYNC intervals in msec (sync interval). Ex-

ample:

rosparam get /canopen/devices

- {baudrate: 500K, name: /dev/pcan32, sync_interval: 10}

- {baudrate: 1M, name: /dev/pcan33, sync_interval: 5}

– chains: A list of chain names (chain = group of devices). Each chain

name must correspond to a namespace on the parameter server. Ex-

ample:

rosparam get /chains

[arm1_controller, arm2_controller, tray_controller]

• For each of the chain names listed in parameter chains (cf. above), a

namespace of that name must exist with the following parameters:

– joint names: A list of names/aliases for each joint in your chain.

– module ids: A list of corresponding CAN IDs (in decimal notation).

– devices: A list of corresponding CAN device files (e.g. /dev/pcan32).

The modules in a chain can be on different CAN buses.

4.3.2 Joint limits (urdf)

Note: Work in progress; joint limits and calibration are not yet pro-

cessed and respected!

The ros canopen node requires at least a rudimentary robot (urdf) model, from

which it reads some information regarding the joints (cf. http://www.ros.org/

wiki/urdf/XML/joint) from the <joint> tags. The parameters currently con-

sidered are:

• <limit> element (mandatory): velocity, lower, upper

• <calibration> element (optional)

You can find example xacro files in the urdf subdirectories in the examples of

ipa canopen tutorials.

http://www.ros.org/wiki/urdf/XML/joint
http://www.ros.org/wiki/urdf/XML/joint

4.3. THE CANOPEN ROS NODE 11

4.3.3 Services, Subscribers, and Publishers

For each chain namespace listed in the chains parameter, the ros canopen node

subscribes to a required topic, publishes on a number of topics, and exposes the

following services:

4.3.3.1 Services

• init: Service datatype cob srvs/Trigger (http://ros.org/doc/api/

cob_srvs/html/srv/Trigger.html). This opens the CAN bus connec-

tion(s) for the devices in the chain, if not already open, and puts the devices

in operational mode.

• recover. Service datatype cob srvs/Trigger (http://ros.org/doc/

api/cob_srvs/html/srv/Trigger.html). If devices are in an emergency

state, this will recover them to operational mode.

• set operation mode. Service datatype cob srvs/SetOperationMode

(http://ros.org/doc/api/cob_srvs/html/srv/SetOperationMode.

html): not used at the moment.

4.3.3.2 Subscribers

• command vel: Message datatype brics actuator/JointVelocities

(http://www.ros.org/doc/api/brics_actuator/html/msg/

JointVelocities.html). Essentially a vector of desired velocities

for each module in a chain.

4.3.3.3 Publishers

• state: Message datatype: pr2 controllers msgs/JointTrajectoryControllerState

(http://www.ros.org/doc/api/pr2_controllers_msgs/html/msg/

JointTrajectoryControllerState.html). Vectors of desired and actual

positions and velocities of all devices in a chain.

• /joint states: Message datatype sensor msgs/JointState (http://www.

ros.org/doc/api/sensor_msgs/html/msg/JointState.html). Publisher

http://ros.org/doc/api/cob_srvs/html/srv/Trigger.html
http://ros.org/doc/api/cob_srvs/html/srv/Trigger.html
http://ros.org/doc/api/cob_srvs/html/srv/Trigger.html
http://ros.org/doc/api/cob_srvs/html/srv/Trigger.html
http://ros.org/doc/api/cob_srvs/html/srv/SetOperationMode.html
http://ros.org/doc/api/cob_srvs/html/srv/SetOperationMode.html
http://www.ros.org/doc/api/brics_actuator/html/msg/JointVelocities.html
http://www.ros.org/doc/api/brics_actuator/html/msg/JointVelocities.html
http://www.ros.org/doc/api/pr2_controllers_msgs/html/msg/JointTrajectoryControllerState.html
http://www.ros.org/doc/api/pr2_controllers_msgs/html/msg/JointTrajectoryControllerState.html
http://www.ros.org/doc/api/sensor_msgs/html/msg/JointState.html
http://www.ros.org/doc/api/sensor_msgs/html/msg/JointState.html

12 CHAPTER 4. CANOPEN COMMUNICATION IN ROS

in the global namespace, taken up e.g. by the robot state publisher

(http://www.ros.org/wiki/robot_state_publisher).

4.4 Driving the Schunk LWA4P arm

The Schunk LWA 4P robotic arm can be driven by CANopen commands. You

can get the necessary configuration files by cloning the following two repositories:

• git clone git@github.com:ipa320/schunk robots.git

• git clone git@github.com:ipa320/schunk modular robotics.git

To launch the CANopen driver, together with a trajectory controller:

roslaunch schunk bringup lwa4p solo.launch

To launch the Powerball arm in Gazebo simulation:

roslaunch schunk bringup sim lwa4p.launch

This will allow you to control the arm by via JointTrajectoryFollowActions. To

test this, you can move to a small number of example configurations from a

graphical command GUI:

roslaunch schunk bringup dashboard lwa4p.launch

4.4.1 Inverse kinematics

Work in progress

http://www.ros.org/wiki/robot_state_publisher

Chapter 5

Extending the CANopen library

Work in progress.

13

Chapter 6

Troubleshooting

For troubleshooting the device, the current recommendation is to run the

get error tool to check the content of the error registers.

14

	1 Introduction
	2 Installation
	2.1 Prerequisites
	2.2 CAN device driver
	2.3 IPA CANopen ROS package
	2.4 ROS-indendent CANopen library
	2.4.1 Installation

	3 Command-line tools
	3.1 The homing tool
	3.2 The move_device tool
	3.3 The get_error tool

	4 CANopen communication in ROS
	4.1 The tutorial examples
	4.2 Getting started with ipa_canopen_ros
	4.3 The canopen_ros node
	4.3.1 Parameters
	4.3.2 Joint limits (urdf)
	4.3.3 Services, Subscribers, and Publishers

	4.4 Driving the Schunk LWA4P arm
	4.4.1 Inverse kinematics

	5 Extending the CANopen library
	6 Troubleshooting

